Nanoarchitetture neurali artificiali per imitare l’apprendimento umano

Nanoarchitetture neurali
Nanoarchitetture neurali artificiali per imitare l'apprendimento del cervello: la scoperta dei ricercatori dei Politecnici di Torino e Milano e dell’INRiM.

Nanoarchitetture neurali artificiali per imitare l’apprendimento del cervello umano: un articolo pubblicato sulla prestigiosa rivista Nature Materials illustra la scoperta di un team di ricercatori dei Politecnici di Torino e Milano e dell’INRiM nel campo dell’intelligenza artificiale.

Negli ultimi anni, sempre più scienziati di diverse discipline che vanno dalla Biologia alla Fisica, dalla Matematica all’Ingegneria, stanno unendo le proprie forze per affrontare la madre di tutte le sfide scientifiche: la comprensione della mente umana. Questo sforzo conoscitivo senza precedenti è alla base del boom dell’Intelligenza Artificiale, grazie alla quale supercomputer di IBM e Google hanno battuto campioni di giochi di strategia (scacchi, Jeopardy, Go), e grazie alla quale i nostri computer e telefoni sono dotati di software sempre più intelligenti, in grado di imparare dalle nostre esperienze. Nonostante questi incredibili progressi, la capacità del cervello umano di processare informazioni spazio-temporali in parallelo e a bassissimo consumo rimane inarrivabile per gli attuali approcci computazionali (il consumo del supercomputer Watson di IBM è circa un milione di volte maggiore di quello del nostro cervello).

Un approccio hardware alle nanoarchitetture neurali

Un team del Politecnico di Torino coordinato da Carlo Ricciardi – docente del Dipartimento di Scienze Applicate e Tecnologia-DISAT – insieme a Daniele Ielmini del Politecnico di Milano e a Gianluca Milano dell’Istituto Nazionale di Ricerca Metrologica-INRiM in un recente studio pubblicato sulla prestigiosa rivista Nature Materials propongono un approccio hardware, partendo dall’evidenza che anche le più complesse funzioni del cervello, come memoria e apprendimento sono espressione di un comportamento collettivo di connessioni (sinapsi) e unità di processo (neuroni) che hanno una natura fisica e materiale. I dispositivi messi a punto da Ricciardi, Ielmini e Milano si basano su reti di nanofili (nanowires) memresistivi, cioè architetture su scala nanometrica (la stessa delle sinapsi biologiche) che mostrano le tipiche funzioni neurali come adattabilità, plasticità e correlazione spaziotemporale.

Un sistema composto da due architetture

In particolare, nell’articolo appena pubblicato su Nature Materials viene proposto un sistema composto da due architetture, entrambe memresistive: la rete di nanofili reagisce agli input, producendo un output spazio-temporale a dimensionalità ridotta e transitorio, il quale viene poi processato da una matrice di RAM resistive non volatili, grazie alle quali si possono implementare funzioni di classificazione e inferenza usando le semplici leggi di Ohm e Kirchoff (physical in-memory computing). Poiché la maggior parte del consumo energetico nei sistemi basati su Intelligenza Artificiale è relativa all’addestramento (training) della rete (come capita anche per le reti neurali biologiche), questa compressione dei parametri operata dalla rete di nanofili comporta una notevole diminuzione del consumo complessivo. Nella prospettiva di sfruttare industrialmente tali potenzialità, i tre gruppi hanno già depositato un brevetto congiunto.

Implementare in materia la dinamica dei processi cognitivi

“Abbiamo mostrato che è possibile implementare ‘in materia’ – spiega Carlo Ricciardila dinamica dei processi cognitivi che da un lato sfruttano la memoria operativa a breve termine per richiamare e confrontare immagini, idee e simboli, mentre dall’altro classificano i risultati in variazioni strutturali delle nostre connessioni (memoria a lungo termine). Inoltre, tali dispositivi possono implementare paradigmi computazionali che necessitano di un addestramento limitato come il reservoir computing, aprendo la strada non solo a computer sempre più intelligenti e a basso consumo, ma anche a protesi neurali impiantabili, che un domani potrebbero consentire il recupero o il contenimento di funzioni neurali in regressione.”

Additive manufacturing

Stampa 3D per lo stoccaggio dell’idrogeno

Rivoluzionare lo stoccaggio dell’idrogeno con la tecnologia SAFETEASY è la mission di 01GREEN. Grazie a un approccio ingegneristico avanzato, che combina la stampa 3D e la chimica dei materiali, l’azienda sta aprendo la strada a soluzioni scalabili ed efficienti per

Tips&Triks

Trucchi e segreti dei riferimenti (datum)

Tutte le novità della nuova norma ISO 5459:2024 sui riferimenti (datum). di Stefano Tornincasa Si è più volte ribadito nelle precedenti rubriche che il riferimento o datum sia un elemento geometrico astratto, ottenuto attraverso un procedimento matematico di associazione col

Design thinking

Il futuro del trasporto acqueo: l’idrogetto fuoribordo approda a Venezia

Questo sistema di propulsione ad idrogetto promette di rivoluzionare la navigazione grazie alla sua silenziosità, sostenibilità e prestazioni superiori, trasformando il modo in cui si naviga nella laguna. di Lisa Borreani L’inquinamento generato dal traffico acqueo rappresenta una delle principali

Additive manufacturing

Ponte pedonale stampato in 3D con materiali di scarto

Un prototipo rivoluzionario del “Ponte di Da Vinci”, considerato il primo ponte al mondo stampato in 3D e costruito con materiali di scarto, è stato completato dopo un anno di intensa ricerca e sperimentazione nell’ambito di una collaborazione multidisciplinare tra